Elastic bag model for molecular dynamics simulations of solvated systems: application to liquid water and solvated peptides.
نویسندگان
چکیده
The fluctuating elastic boundary (FEB) model for molecular dynamics has recently been developed and validated through simulations of liquid argon. In the FEB model, a flexible boundary which consists of particles connected by springs is used to confine the solvated system, thereby eliminating the need for periodic boundary conditions. In this study, we extend this model to the simulation of bulk water and solvated alanine dipeptide. Both the confining potential and boundary particle interaction functions are modified to preserve the structural integrity of the boundary and prevent the leakage of the solute-solvent system through the boundary. A broad spectrum of structural and dynamic properties of liquid water are computed and compared with those obtained from conventional periodic boundary condition simulations. The applicability of the model to biomolecular simulations is investigated through the analysis of conformational population distribution of solvated alanine dipeptide. In most cases we find remarkable agreement between the two simulation approaches.
منابع مشابه
Elastic bag model for molecular dynamics simulations of solvated systems: application to liquid argon.
A new approach is developed to study the dynamics of the localized process in solutions and other condensed phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic boundary conditions and allows for a reduction in the number of solvent m...
متن کاملMoving solvated electrons with light: nonadiabatic mixed quantum/classical molecular dynamics simulations of the relocalization of photoexcited solvated electrons in tetrahydrofuran (THF).
Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-...
متن کاملProbing the collective vibrational dynamics of a protein in liquid
Biological polymers are expected to exhibit functionally relevant, global, and subglobal collective modes in the terahertz (THz) frequency range (i.e., picosecond timescale). In an effort to monitor these collective motions, we have experimentally determined the absorption spectrum of solvated bovine serum albumin (BSA) from 0.3 to 3.72 THz (10–124 cm ). We successfully extract the terahertz mo...
متن کاملProbing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy.
Biological polymers are expected to exhibit functionally relevant, global, and subglobal collective modes in the terahertz (THz) frequency range (i.e., picosecond timescale). In an effort to monitor these collective motions, we have experimentally determined the absorption spectrum of solvated bovine serum albumin (BSA) from 0.3 to 3.72 THz (10-124 cm(-1)). We successfully extract the terahertz...
متن کاملStructure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 26 شماره
صفحات -
تاریخ انتشار 2006